
Future Generation Computer Systems 23 (2007) 391–397
www.elsevier.com/locate/fgcs
Algorithmic re-structuring and data replication for protein structure
comparison on a GRIDI

G. Cirielloa, M. Comina,∗, C. Guerraa,b

a Department of Information Engineering, University of Padova, Italy
b College of Computing, Georgia Tech, USA

Received 30 January 2006; accepted 26 March 2006
Available online 4 August 2006

Abstract

This paper describes a major restructuring of PROuST, a method for protein structure comparison, for an efficient porting to the Grid. PROuST
consists of different components: an index-based search that produces a list of proteins that are good candidates for similarity, and a dynamic
programming algorithm that aligns the target protein with each candidate protein. Both components use the same geometric properties of secondary
structure elements of proteins. Thus, an important issue arises when porting the application to the Grid, i.e. the tradeoff between data transfer and
data recomputation. Our restructured application avoids recomputation by re-using the data as much as possible, once they are accessed. The
algorithmic changes to PROuST allow to reduce the number of data accesses to storage elements and consequently the execution time. This paper
also discusses data replication policies on a Grid environment to optimize the data transfer time.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Protein similarity; Dynamic programming; Data management; Distributed applications; Grid computing
1. Introduction

Comparing protein structures is important for protein
classification and for understanding protein functions. It
is a very active research area in computational biology
and bioinformatics [12,9]. We have developed a method
PROuST [6] that allows efficient retrieval of similarity
information from a database containing all protein structures
of the Protein Data Bank PDB [1]. This paper discusses issues
arising when porting the application to the Grid and presents
a major restructuring of PROuST for an efficient porting.
PROuST consists of two main components: an index-based
search component that generates a list of candidates proteins
for a target protein, and a subsequent refinement component
that performs pairwise comparisons and alignments by dynamic
programming (DP).

I An extended abstract related to this work is included in the IEEE
Proceedings of High-performance Computational Biology HICOMB 2006.

∗ Corresponding author. Tel.: +39 049 8277928.
E-mail addresses: ciriello@dei.unipd.it (G. Ciriello),

ciompin@dei.unipd.it (M. Comin), guerra@dei.unipd.it (C. Guerra).

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.03.029
The index-based search considers geometric properties of
the secondary structure elements (SSE) of the proteins, i.e.
α-helices and β-strands. It computes for all triplets of SSE the
angles formed by the three pairs of linear segments associated
to the SSE and uses them as indexes to a three-dimensional (3D)
hash table. The hash table allows to retrieve a list of proteins
that are good candidates for similarity with the target protein,
without the need to examine separately every single protein
of the PDB. A pairwise structure comparison aligns the target
protein with each protein of the candidate list. By combining
these two approaches, PROuST achieves good results in terms
of robustness and agreement with existing classifications of
protein structures. In addition its time performance compares
well with that of other existing approaches. However, the
amount of computation and data involved is quite high, given
the current size of the PDB of more than 33,000 structures.
For an exhaustive analysis of classification accuracy and time
performance we refer the reader to [6].

The new version of PROuST integrates the index-based
search and the dynamic programming algorithm, and requires
some major changes to the algorithms and data structures
resulting in a more efficient solution. It exploits the fact

http://www.elsevier.com/locate/fgcs
mailto:ciriello@dei.unipd.it
mailto:ciompin@dei.unipd.it
mailto:guerra@dei.unipd.it
http://dx.doi.org/10.1016/j.future.2006.03.029

392 G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397
that the same geometric properties of secondary structure
elements of proteins, angles and distances, are used by the
two main components of PROuST. Obviously, an important
issue of the distributed implementation is data transfer vs. data
recomputation tradeoffs. Our solution avoids recomputation by
re-using the hash table data as much as possible, once they are
accessed.

The emerging Grid technology [8] is becoming an
important aspect for the solution of compute intensive
problems. The computational Grid enables the use of a large
number of different machines acting as a single one, by
sharing both storage capacity and computing power. The
importance of sharing data and resources in a secure manner
is proved by the increasing interest of scientists towards
this technology, especially in the biomedical community,
that includes bioinformatics and medicine [11]. The Grid.it
project [2], within which this work has been done, is aimed at
developing a middleware layer enabling science in areas such
as High Energy Physics, Earth Observation and Biomedicine.
Biomedical applications have very challenging requirements in
terms of computational power and amount of data. This paper
focuses on a structural bioinformatics application on a Grid
and deals with the issues of data management and algorithmic
enhancement for an efficient porting of the application to
the Grid. In addition, it discusses data replication policies to
optimize the data transfer time. Replica management is a crucial
aspect of a gridifying strategy [3,10], because the availability of
data close to the Grid nodes where the job requesting the data
runs enables latency reduction and efficient access.

The paper is organized as follows. In the next section
we review the PROuST method. In Section 3 we describe a
restructuring of the application that reduces the number of
data accesses and avoids recomputation and in Section 4 we
present its distributed implementation. In Section 5 the porting
of the application to the Grid is discussed. Time performance
is analyzed in Section 6. This work ends with conclusions in
Section 7.

2. PROuST: An all-to-all protein structure comparison
method

PROuST [6] combines different techniques that allow fast
retrieval of similarity information from a database containing
all the protein structures of the PDB. Proteins from the PDB
are represented by linear segments associated to their SSE,
i.e. α-helices and β-strands. In our internal representation, the
proteins from PDB are encoded by a set of files, each consisting
of the list of the SSE segments of a protein. Starting from these
files, all triplets of SSE are computed, and the angles formed
by the three pairs of segments of a triplet are used as indexes
to a 3D hash table, where the triplets are stored. Once the hash
table is built, an entry or cell contains the triplets of all proteins
characterized by similar dihedral angles. The hash tables are
accessed to retrieve very efficiently the proteins most similar to
a given target protein. As a result, a list of candidate proteins
is generated. The candidate list varies in length, but, typically,
for a protein with an average number of SSE (i.e. 12-13 SSE) it
consists of more than 5000 proteins.
The second component of PROuST is a pairwise protein
structure comparison which aligns the target protein with each
candidate protein of the list. It uses as input the internal
representation of the proteins, and returns a similarity score
according to which the candidate proteins are re-ranked into
the final similarity list. The alignment is obtained by DP.
If P is the target and Q a candidate protein, with SSE
segments p1, . . . , pn and q1, . . . , qm , respectively, DP finds
the associations (pi , q j) that maximize a given similarity
score and also satisfy the continuity constraints, i.e. if (pi , q j)
and (ph, qk) are two pairs of associated SSE and i < h
then j < k. The DP determines the optimal non-decreasing
path in a 2D score matrix M . The main characteristic of
our algorithm, that distinguishes it from other DP algorithms
applied to SSE alignment, is that the score matrix is built
from geometric properties of triplets of secondary structures,
the same properties used by the indexing procedure. The
score of the pair (pi , q j), stored at M(i, j), is given by the
number of times the pair (pi , q j) occurs in any two equivalent
triplets of SSE segments of P and Q. Two triplets (pu, pv, pz)

and (qr , qs, qt) are equivalent if they have similar angle
and distance values. Two equivalent triplets determine three
candidate pairs of corresponding segments: (pu, qr), (pv, qs),
and (pz, qt), that contribute to the entries M(u, r), M(v, s),
M(z, t) of score matrix M , whose values are incremented by
one. The DP uses as input the internal vectorial representation
of the two proteins to generate the score matrix, based on which
the similarity score is determined. As we will see in the next
section, the construction of the score matrix M is the step most
affected by the restructuring of PROuST.

Even though the DP computation for a pair of proteins is
quite fast, and the list of proteins has been reduced from the
33,000 proteins of the PDB to a few thousand candidates,
the amount of time required by all DP alignments may still
be quite high. We remark here that often only a set of
representative proteins is selected from the PDB for structure
comparison, in such cases obviously the time requirements
go down considerably. We choose to search the entire PDB
because we want to discover non-trivial similarities, not only
related to the standard family classification.

3. Re-structuring PROuST

Here we describe a major restructuring of our application
for an efficient porting to the Grid. As already mentioned,
PROuST uses the same geometric properties of SSE, angles and
distances, in different components. An important issue arises
in the distributed implementation of the pairwise structural
alignments by DP, that is whether to exploit and reuse the
information that has been already computed and stored in the
hash table or recompute it from the internal representation of
the candidate proteins.

The recomputation of the angles and distances of segments
for all candidate proteins requires access to many small
files each containing the vectorial representation (list of SSE
segments) of a protein. In a local scenario, recomputation may
be more cost-effective, due to the large size of the hash table

G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397 393
and large number of elements in each table cell. With more
than 30,000 proteins, the number of triplets in the hash table is
above 40,000,000. Consequently, the access time for the table
is relatively large. Moving from a local to a distributed system
data transfers become a crucial aspect. We propose a solution
that avoids recomputation by re-using the hash table data as
much as possible, once they are accessed. It combines indexing
and structural alignment: the index-based search in addition
to generating a candidate list of proteins also builds the score
matrices to be used later by the pairwise structural comparisons.
The internal vectorial representation of the proteins is no longer
needed because the angles and distances of segments are not
recomputed. This results in a computational advantage.

The new version of PROuST consists of the following steps:

(1) Pre-processing phase:
• Hash-table construction and updates.

(2) Index-based structural alignment:
• Search for similarities of the target protein with all

proteins stored in the hash tables and build the score
matrices.

• Use the DP algorithm to obtain the optimal path in each
score matrix and the corresponding optimal structural
alignment.

(3) Atomic pairwise protein superimposition:
• on user’s demand.

The following is a sketch of the unified procedure that, given
the target protein P , returns the list C of candidate proteins and
the list L of score matrices. We denote by MQ the score matrix
for the pair of proteins P and Q. MQ is created only if protein
Q has at least one triplet of SSE equivalent to a triplet of P .

Unified Procedure
Step 1.

Initialize the list L and C to empty.
Step 2.

Consider all triplets of SSE of P and for each such triplet
(pu, pv, pz), with u < v < z, do the following:

(i) Compute the angles αuv, αvz, αuz and the distances
duv, dvz, duz of the three pairs of segments. Access the hash
table at the cell indexed by the three quantized angles.

(ii) If the cell is not empty, scan all triplets of SSE stored in the
cell.

Let (qr , qs, qt) be one such triplet, r < s < t , with
distances hrs, hst , hr t , and Q the protein containing qr , qs ,
and qt .
if the distances of the two triplets are within a given
threshold TD, i.e.

|duv − hrs | < T D, |dvz − hst | < T D and |duz − hr t | <

T D then
(ii.a) Index-based Search

Cast a vote to protein Q and insert it into list C if
not present.

(ii.b) Score matrix building
If L does not contain an entry for protein Q,

create a new score matrix MQ , initialized to 0, and
insert it into L.
Update MQ as follows:
{MQ(u, r) = MQ(u, r) + 1; MQ(v, s) =

MQ(v, s) + 1; MQ(z, t) = MQ(z, t) + 1;}

End.

The details of the voting process are omitted here (see [7]). The
above procedure builds all score matrices at the same time; with
a protein of average size, this may imply the creation and update
of more than 5000 data structures. To guarantee reasonable
storage requirements, we use an ad hoc dynamic data structure
for storing a matrix, called Dynamic Matrix (DyM). A score
matrix is represented as a linked list of column vectors each
of length n (n being the number of SSE of P). A vector is
associated to an SSE q of the candidate protein Q and its i th
element is the score of q with the i th SSE of P . A column
vector is inserted into the column vector list only if there is at
least a triplet of SSE containing q that is equivalent to one triplet
of P . The order of the columns in the linked list representation
of the matrix follows the sequential order of the SSE along the
backbone chain. This is a requirement of the DP algorithm.

4. A distributed implementation

The first and last step of modified PROuST, i.e. the hash
table construction and the atomic superposition, are executed
off-line, locally on a cluster of machines. The index-based
structural alignment is executed on-line on the nodes of a
computational Grid, as we will describe later. The construction
of the hash tables is compute intensive, due to the large number
of proteins in the PDB inserted in the hash table with a storage
requirement for the hash table of more than 5 GB. The pre-
processing phase is also triggered by updates in PDB, or by
timeout expiration (each month), or by user intervention.

A distributed implementation of the hash table construction
was presented in [5,7] on a cluster of machines; it is based on
a partition of the hash table into subtables, each containing a
subset of the proteins of the PDB. Each machine of the cluster
constructs a subtable of the hash table. The input proteins
are inserted into the subtables by a greedy procedure that
randomly partitions the proteins into groups of fixed size k,
with k larger than the number of subtables, and assigns each
group to the first available computer of the cluster for insertion
into its associated subtable. As shown by the experiments,
this simple procedure generates subtables of approximately
the same size; furthermore it distributes the set of all proteins
almost uniformly across the subtables.

We now describe a distributed implementation of the index-
based structural alignment. It follows a master/slave paradigm.
For a given target protein, the master broadcasts information
about the target protein (PDB file) to all slaves. The index-based
structural alignment is carried out independently by all slaves
each operating on a different subtable. A slave generates a list
of candidate proteins selected among those stored in its hash
subtable. It also determines the score matrices associated to the
target protein and each candidate protein. All the data involved
in the computation are stored in the hash subtable. Then, the
slave performs all DP computations for the candidate proteins,

394 G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397
either the entire list of candidates or a reduced list of top-ranked
candidates. According to the similarity measure determined by
the structural alignment, the candidate proteins are sorted into
a new list, that is sent back to the master. The master collects
from the slaves all such lists and then merges them to obtain the
overall ranking.

The degree of parallelism and the number of slaves depend
on the partition of hash table into subtables. We experimented
with partitions of the hash table into 3, 9 and 30 subtables,
approximately of sizes 1.5 GB, 500 MB, and 150 MB,
respectively.

5. Gridifying PROuST

Our implementation was developed for the Italian Grid.it,
more specifically for the INFNGrid production grid that is also
part of the project Grid.it [2]. The INFNGrid counts more
than 20 sites among Italian institutions. Each site has several
Computing Elements (CE), i.e. clusters of machines, or parallel
machines. In addition, some sites have an associated Storage
Element (SE). The main applications of Grid.it were originally
in physics, however it has become also open to other fields such
as bioinformatics and biomedicine.

Here we explain how to exploit the Grid capabilities to
optimize the execution time and data storage of PROuST. Job
scheduling is handled by the Globus default scheduling strategy
even if in the future we plan to explore other possibilities.

5.1. Data distribution and replica

Replica optimization is a crucial aspect of a gridifying
strategy, because the availability of data in the SE close to
the CE where the job requesting the data runs enables latency
reduction and efficient access [3,4]. Replica management in
the European DataGrid and Grid.it is handled by independent
services interacting via the Replica Manager (RM) [3]. In a
Grid, a file is first registered with an identifier, the Grid Unique
ID (GUID), then it is replicated and distributed. The main
advantage of using replicas is that one can refer to a file simply
using its GUID, then the RM through its Replica Catalog (RC),
links the GUID to all the replicas of the file. Referring to all
replica files using a unique GUID allows to ignore how many
replicas are in the Grid and where they are.

The Replica Optimization Service (ROS) selects the best
available replica of the data files a job needs. Using these
services we experimented with two main policies for replica
management, that we called on-line replica and off-line replica.

On-line replica means that every time a job needs data, the
CE where the job runs first looks for them at the local SE. If
the data are not available locally, the ROS optimization service
chooses whether to access them remotely or replicate them on
the local SE [3]. A replica is made when the estimate of the
time spent accessing the data from a remote site is greater than
the overall time needed to replicate the data at the local site
and access them locally. The on-line replica policy requires that
the user has high control over the storage resources. In fact,
replicating data files on-line requires a permission to insert new
Fig. 1. Data replication.

files into an SE of the Virtual Organization (VO) and to delete
replicas of other files if insufficient space is available. This
permission is not always granted because, typically, a single
storage resource is shared by many users and even by many
VO.

The off-line replica policy refers to the case when all replica
operations are made once and for all, before the user submits
any job and the resource broker assigns the jobs to the CE. In
this scenario, data are accessed either from the local SE, if a
replica of the data is available there, or directly from the remote
SE selected by the ROS based on geographical location and
network latency.

We adopt an off-line replica policy, by replicating the hash
subtables in all available SE of the INFNGrid production grid
(see Fig. 1). With only about 8 SE available to our VO and a
large number of jobs requesting data, the on-line policy would
end up replicating all data in all SE exactly as the off-line policy.
However, since the replicas for the on-line policy are made at
run time, this strategy would be less efficient.

In this situation, it may still happen that a job running on
a CE needs to access data from a remote SE. This is because
not all CE of Grid.it have an on site local SE, furthermore
permission to write is limited to some SE of the Grid. The
different steps of our application running on a Grid environment
are summarized in Fig. 2.

For the analysis of the replica policies, an important
performance metric is the effective network usage rENU
introduced in [3] and defined as:

rENU =
Nremotefileaccesses + Nfilereplications

Nlocalaccesses

where Nfilereplications is the number of times the replica
optimization service decides to replicate the files; while
Nremotefileaccesses and Nlocalaccesses are the numbers of files
accessed remotely and locally, respectively. The performance
metric for the off-line replica policy becomes:

rENU =
Nremotefileaccesses

Nlocalaccesses

G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397 395

b
t
t

6

o
o
r
d
a
n
s
t
e
d
T
o
d
n
i
B
c

6

t
a
d

(
(

T
a
A
p
p

s

Fig. 2. Application execution steps in a Grid environment.

ecause file replications are not allowed during the execution of
he jobs, thus Nfilereplications = 0. Performance measures, using
he above metric, will be given in the following section.

. Time analysis

The time analysis is divided in two parts: the analysis
f the time spent to download the subtables and of the
verall execution time. We have to make some preliminary
emarks: the analysis of the time needed to download the
ata and perform the computation involves many variables that
re hardly predictable. Among them, the most crucial is the
etwork traffic that can slow down the speed of downloads
ignificantly. Also important is the load of the Grid’s nodes
hat can severely affect the time performance. In a real Grid
nvironment, we observed variations of the execution times for
ifferent runs of the same task even by one order of magnitude.
herefore, we run the application several times over a period
f about two months, from August to October 2005, under
ifferent conditions of network traffic and performance of the
odes. The software consists of C programs for comparing an
nput protein against all proteins of the PDB, and of a pool of
ASH scripts to manage job description, submission and status
ontrol over the Grid.

.1. Data transfer analysis

We determined the time to download an hash subtable for
he three different partitions of the original table into 3, 9,
nd 30 subtables. For each partition we consider two data
istributions:

1) a single SE stores all subtables,
2) all subtables are replicated in all available SE.

able 1 summarizes the results. The times reported in the table
re the mean values over all the runs over a two month period.
s expected, the increased granularity in the hash table’s
artition and the data replica throughout the storage elements
ositively affect the data transfer time.

In Fig. 3 we consider samples of transfer times for a single
ubtable of the 9 subtable partition. All values are obtained
Table 1
Data transfer time

Time (s) 3 subtables 9 subtables 30 subtables

Single SE 748 279 90
Many SE 492 160 49

Fig. 3. Data transfer time variation: one vs. many replicas.

Fig. 4. Typical data transfer time variation using many replicas during a month.

by runs in the same day. The differences in transfer time
are mostly due to the different ways the data are accessed:
remotely or locally. Typically, higher values are related to
remote accesses. The continuous line in the figure shows data
transfer time variations when a single fixed SE is used. As
expected, large variations are observed in this case, since local
accesses occur rarely and remote access times vary according
to the geographical location of the CE. The dotted line shows
transfer times measured when all replicas are available in all
SE. Even if some high values can still be observed, indicating
remote accesses, the number of local accesses increases, thus
reducing the average time significantly.

Fig. 4 represents typical transfer time variations over a
period of one month. Here we consider the case when the 9
subtables are replicated in all SE. Each day several runs were
made and the corresponding times are reported. The variations
observed in the figure are due to the network traffic and Grid
conditions. For this set of experiments we also evaluated the
effective network usage rENU =

24
96 = 0.25.

396 G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397
Table 2
VersionB (before re-organization)

Time (s) 3 subtables 9 subtables 30 subtables

t1: index-based search 19 5 1
t2: DP + score

1016 370 136
matrices building

Execution time breakdown for protein 1a2z chain C on a single CE.

6.2. Execution time analysis

Before running the application on a Grid, we conducted
experiments to evaluate the effect on time performance of the
algorithmic changes to PROuST discussed in Section 3 when
it is executed on a single computing element, a standard PC.
In the following, versionB and versionA are the two versions
of the algorithm, before and after the re-organization of its
components, respectively. Execution times are determined for
three partitions of the hash table, into 3, 9 and 30 subtables. The
execution time breakdown for versionB are reported in Table 2:
t1 refers to the average time to obtain from an hash subtable
the list of candidate proteins. This time, for a given partition
of the hash table, is averaged over all subtables. It has to be
noted, however, that there is little variance across the subtables.
t2 is the total execution times of all DP computations to align
the target protein with the candidate proteins extracted from a
subtable; this time is averaged over all subtables of the hash
table partition. Recall that, in versionB, the DP algorithm builds
the score matrix and re-computes the angles and distances of all
triplets of secondary structures of the target and of the candidate
protein. The execution times in Table 2 were obtained with the
input protein 1a2z (chain C), a peptidase protein, that contains
14 SSE. Only 12 SSE were included in our analysis since SSE
with less than 3 residues were discarded. Table 3 shows the
execution times of the re-organized components when executed
with the same target protein 1a2z as input. In versionA, the
hash table search includes the building of the score matrices
(t3), thus the DP (t4) does not have to re-compute the geometric
properties of SSE.

As can be seen from these results, versionA is consistently
better than versionB and the gain in performance increases with
the number of subtables. Furthermore, results on proteins of
different sizes, i.e. different number of SSE, show that this
improvement is more relevant for proteins of average/small
sizes. For very large proteins, relatively infrequent in the PDB
database, some improvement can still be observed but it is
negligible. These experiments, repeated over a large set of
proteins, led us to the conclusion that the algorithmic changes
introduced in this paper result in an enhancement even when
the application was executed on a single CE. Thus we can only
expect a further improvement when porting the application to
the Grid.

We show below the execution times of PROuST for sixteen
input proteins, with sizes ranging from 5 to 99 secondary
structures. These times are for the overall computation: the
index-based search and all DP computations to align the target
protein with all candidate proteins. The execution times for
each protein chain reported in Table 4 and Fig. 5 are the mean
Table 3
VersionA (after re-organization)

Time (s) 3 subtables 9 subtables 30 subtables

t3: index-based search +
980 84 19

score matrices building
t4: DP 2 <0.5 <0.5

Execution time breakdown for protein 1a2z chain C on a single CE.

Table 4
PROuST execution times

Protein #SSs 3 subtables 9 subtables 30 subtables

4hck. 5 17 (s) 4 (s) 1 (s)
110m. 8 263 32 7
111m. 8 228 31 8
112m. 8 221 31 8
1etc. 8 199 21 4
1fgz A 8 180 20 4
2gva A 9 206 26 6
2gva B 9 228 26 5
1a2z A 12 1098 99 17
1a2z B 12 1046 99 18
1a2z C 12 980 88 16
1a2z D 12 1009 90 16
9xia. 20 4238 476 87
8icm A 22 4874 561 102
1ea0 A 95 N/A 4986 676
1ea0 B 99 N/A 5279 707

Fig. 5. PROuST execution time.

values over several runs of the same computation performed
during a two month period. In Fig. 5 times are presented on
a log scale. We observe that by increasing the number of
subtables, up to 30, and consequently the parallelism degree
we obtain a constant ratio of the execution times. For partitions
with more than 30 subtables we could see a degradation in time
performance.

7. Conclusion

We have presented a distributed implementation on Grid.it
of a software tool for protein structure comparison. A major
restructuring of the application has been developed for an
efficient porting to a computational Grid. Without restructuring

G. Ciriello et al. / Future Generation Computer Systems 23 (2007) 391–397 397
the DP phase of the application makes many small requests
of data that involve frequent and costly accesses to SE. The
re-organized version of the software uses the data available
from the hash tables for more than one operation once they
are accessed; i.e. for the determination of the list of candidate
proteins and also for the computation of the score matrices
used by DP. Furthermore, by re-using the hash table data
we avoid the access to the many small files containing the
protein vectorial representations that would be needed by
DP if the geometric properties were to be recomputed. We
have also experimented with different ways of exploiting
data replica on the Grid, and with different partitions of
the hash table into subtables. The algorithmic changes and
the gridification strategies employed allow for a significant
reduction in communication time and overall execution time.

References

[1] The Protein Data Bank, Research Collaboratory for Structural Bioinfor-
matics (RCSB), http://www.rcsb.org/pdb.

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza,
D. Puppin, L. Scarponi, M. Vanneschi, C. Zoccolo, Components for
high performance programming in the Grid.it project, in: Proc. of Intl.
Workshop on Component Models and Systems for Grid Applications,
ACM ICS, 2004.

[3] D. Cameron, J. Casey, L. Guy, P. Kunszt, S. Lematre, G. McCance,
H. Stockinger, K. Stockinger, G. Andronico, W. Bell, I. Ben-Akiva,
D. Bosio, R. Chytracek, A. Domenici, F. Donno, W. Hoschek, E. Laure,
L. Lucio, P. Millar, L. Salconi, B. Segal, M. Silander, Replica
management in the European DataGrid project, Journal of Grid
Computing 2 (4) (2004) 341–351.

[4] D.G. Cameron, A.Fr. Millar, C. Nicholson, R. Carvajal-Schiaffino,
K. Stockinger, F. Zini, Analysis of scheduling and replica optimization
strategies for data grids using OptorSim, Journal of Grid Computing 2 (1)
(2004) 57–69.

[5] M. Comin, C. Ferrari, C. Guerra, Grid deployment of bioinformatics
applications: A case study in protein similarity determination, Parallel
Processing Letters 14 (2) (2004) 163–176.

[6] M. Comin, C. Guerra, G. Zanotti, PROuST: A comparison method of
three-dimensional structure of proteins using indexing techniques, Journal
of Computational Biology 11 (6) (2004) 1061–1072.

[7] C. Ferrari, C. Guerra, G. Zanotti, A grid-aware approach to protein
structure comparison, Journal of Parallel and Distributed Computing 63
(7–8) (2003) 728–737.

[8] I. Foster, C. Kesselman, The Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers, 1999.
[9] L. Holm, C. Sander, Mapping the protein universe, Science (273) (1996)
595–602.

[10] J.G. Jensen, T. Shah, O. Synge, J. Gordon, G. Johnson, R. Tam, Enabling
grid access to mass storage: Architecture and design of the EDG storage
elements, Journal of Grid Computing 3 (1–2) (2005) 101–112.

[11] J. Montagnat, F. Bellet, H. Benoit-Cattin, V. Breton, L. Brunie,
H. Duque, Y. Legré, I.E. Magnin, L. Maigne, S. Miguet, J.M. Pierson,
L. Seitz, T. Tweed, Medical image simulation, storage, and processing on
the european datagrid testbed, Journal of Grid Computing 2 (4) (2004)
387–400.

[12] I.N. Shindyalov, P.E. Bourne, Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path, Protein Engineering 11
(9) (1998) 739–747.

G. Ciriello received the laurea degree in computer
science from the University of Padova in April 2005.
From May to December 2005 he was a scientific
collaborator at the Bioinformatics and Computational
Biology Group of University of Padova, working
on Grid implementation strategies of bioinformatics
applications. Currently he is a Ph.D. student in
computer science at the University of Padova.
His research interests include distributed computing,

bioinformatics and machine learning.

M. Comin received the laurea degree in computer
science in 2003 from the University of Padova (Italy).
In 2003 he was visiting student at Purdue University
and in 2004 research intern at the IBM T.J. Watson
Research Center. Since 2004 he is a Ph.D. student
in computer science at the University of Padova.
His interests are in the design of algorithms and
applications for pattern discovery, data compression,
geometric pattern matching, structural proteomics and

grid computing.

C. Guerra works in the areas of Computational
Biology and Computer Vision. Her recent interests fall
in the domains of protein classification, recognition
and docking. Formerly an Associate Professor
at University of Rome, Italy, she joined the
Department of Information Engineering of the
University of Padova, Italy, where she became a
Professor in the Faculty of Engineering. She has
visited extensively with US Institutions, including

Rensseleaer Polytechnic and CMU, and has been on the CS faculty of Purdue
University for over a decade. Now she is professor at the College of Computing
at the Georgia Institute of Technology.

http://www.rcsb.org/pdb

	Algorithmic re-structuring and data replication for protein structure comparison on a GRID
	Introduction
	PROuST: An all-to-all protein structure comparison method
	Re-structuring PROuST
	A distributed implementation
	Gridifying PROuST
	Data distribution and replica

	Time analysis
	Data transfer analysis
	Execution time analysis

	Conclusion
	References

